IDEs

Introduction

What

Can explain IDEs

Professional software engineers often write code using Integrated Development Environments (IDEs). IDEs support most development-related work within the same tool (hence, the term integrated).

An IDE generally consists of:

  • A source code editor that includes features such as syntax coloring, auto-completion, easy code navigation, error highlighting, and code-snippet generation.
  • A compiler and/or an interpreter (together with other build automation support) that facilitates the compilation/linking/running/deployment of a program.
  • A debugger that allows the developer to execute the program one step at a time to observe the run-time behavior in order to locate bugs.
  • Other tools that aid various aspects of coding e.g. support for automated testing, drag-and-drop construction of UI components, version management support, simulation of the target runtime platform, modeling support, AI-assisted coding help, collaborative coding with others.

Examples of popular IDEs:

  • Java: Eclipse, IntelliJ IDEA, NetBeans
  • C#, C++: Visual Studio
  • Swift: XCode
  • Python: PyCharm
  • Multiple languages: VS Code

Some web-based IDEs have appeared in recent times too e.g., Amazon's Cloud9 IDE.

Some experienced developers, in particular those with a UNIX background, prefer lightweight yet powerful text editors with scripting capabilities (e.g. Emacs) over heavier IDEs.


Exercises:

Which of these are features available in IDEs?




Debugging

What

Can explain debugging

Debugging is the process of discovering defects in the program. Here are some approaches to debugging:

  • Bad -- By inserting temporary print statements: This is an ad-hoc approach in which print statements are inserted in the program to print information relevant to debugging, such as variable values. e.g. Exiting process() method, x is 5.347. This approach is not recommended due to these reasons:
    • Incurs extra effort when inserting and removing the print statements.
    • These extraneous program modifications increase the risk of introducing errors into the program.
    • These print statements, if not removed promptly after the debugging, may even appear unexpectedly in the production version.
  • Bad -- By manually tracing through the code: Otherwise known as ‘eye-balling’, this approach doesn't have the cons of the previous approach, but it too is not recommended (other than as a 'quick try') due to these reasons:
    • It is a difficult, time consuming, and error-prone technique.
    • If you didn't spot the error while writing the code, you might not spot the error when reading the code either.
  • Good -- Using a debugger: A debugger tool allows you to pause the execution, then step through the code one statement at a time while examining the internal state if necessary. Most IDEs come with an inbuilt debugger. This is the recommended approach for debugging.